Imaging Mass Spectrometry of Diversified Cardiolipin Molecular Species in the Brain
نویسندگان
چکیده
MALDI imaging mass spectrometry (MALDI-IMS) has been used successfully in mapping different lipids in tissue sections, yet existing protocols fail to detect the diverse species of mitochondria-unique cardiolipins (CLs) in the brain which are essential for cellular and mitochondrial physiology. We have developed methods enabling the imaging of individual CLs in brain tissue. This was achieved by eliminating ion suppressive effects by (i) cross-linking carboxyl/amino containing molecules on tissue with 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and (ii) removing highly abundant phosphatidylcholine head groups via phospholipase C treatment. These treatments allowed the detection of CL species at 100 μm resolution and did not affect the amount or molecular species distribution of brain tissue CLs. When combined with augmented matrix application, these modifications allowed the visualization and mapping of multiple CL species in various regions of the brain including the thalamus, hippocampus, and cortex. Areas such as the dentate and stratum radiatum exhibited higher CL signals than other areas within the hippocampal formation. The habenular nuclear (Hb)/dorsal third ventricle (D3 V) and lateral ventricle (LV) areas were identified as CL "hot spots". Our method also allowed structural MS/MS fragmentation and mapping of CLs with identified fatty acid residues and demonstrated a nonrandom distribution of individual oxidizable (polyunsaturated fatty acid containing) and nonoxidizable (nonpolyunsaturated containing) CLs in different anatomical areas of the brain. To our knowledge, this method is the first label-free approach for molecular mapping of diversified CLs in brain tissue.
منابع مشابه
Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry.
Electrospray ionization mass spectrometry has previously been used to probe qualitative changes in the phospholipid cardiolipin (CL), but it has rarely been used in a quantitative manner. We assessed changes in the amount of individual molecular species of cardiac CL present in a model of congestive heart failure using 1,1',2,2'-tetramyristoyl cardiolipin as an internal standard. There was a li...
متن کاملProteome analysis of Cryptosporidium parvum and C. hominis using two-dimentional electrophoresis, image analysis and tandem mass spectrometry
Until recently, Cryptosporidium was thought to be a single species genus. Molecular studies now showthat there are at least 10 valid species of this parasite. Among them, two morphologically identical species, C.hominis and C. parvum are the most pathogenic identified to date and share 97% of identical genomes.Post-genomic analyses is therefore necessary to explore further the...
متن کاملChlorella diet alters mitochondrial cardiolipin contents differentially in organs of Danio rerio analyzed by a lipidomics approach
The zebrafish (Danio rerio) is an important and widely used vertebrate model organism for the study of human diseases which include disorders caused by dysfunctional mitochondria. Mitochondria play an essential role in both energy metabolism and apoptosis, which are mediated through a mitochondrial phospholipid cardiolipin (CL). In order to examine the cardiolipin profile in the zebrafish model...
متن کاملImaging Mass Spectrometry Technology and Application on Ganglioside Study; Visualization of Age-Dependent Accumulation of C20-Ganglioside Molecular Species in the Mouse Hippocampus
Gangliosides are particularly abundant in the central nervous system (CNS) and thought to play important roles in memory formation, neuritogenesis, synaptic transmission, and other neural functions. Although several molecular species of gangliosides have been characterized and their individual functions elucidated, their differential distribution in the CNS are not well understood. In particula...
متن کاملStructural characterization of molecular phospholipid species in cytoplasmic membranes of the cell wall-less Streptomyces hygroscopicus L form by use of electrospray ionization coupled with collision-induced dissociation mass spectrometry.
A comparative analysis of the lipid compositions and fatty acids in the cytoplasmic membranes of Streptomyces hygroscopicus and its stable cell wall-less L form has been carried out to detect the differences which may be involved in the altered properties of the L-form membranes. Because only quantitative differences could be found (8), we analyzed the lipid components at the molecular level. E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 86 شماره
صفحات -
تاریخ انتشار 2014